GCE

Mathematics

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

(i) Integrating factor. $\mathrm{e}^{\int x \mathrm{~d} x}=\mathrm{e}^{\frac{1}{2} x^{2}}$ $\begin{aligned} & \Rightarrow \frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{\frac{1}{2} x^{2}}\right)=x \mathrm{e}^{x^{2}} \\ & \Rightarrow y \mathrm{e}^{\frac{1}{2} x^{2}}=\frac{1}{2} \mathrm{e}^{x^{2}}(+c) \\ & \Rightarrow y=\mathrm{e}^{-\frac{1}{2} x^{2}}\left(\frac{1}{2} \mathrm{e}^{x^{2}}+c\right)=\frac{1}{2} \mathrm{e}^{\frac{1}{2} x^{2}}+c \mathrm{e}^{-\frac{1}{2} x^{2}} \end{aligned}$	B1 M1 A1 A1 4	For correct IF For $\frac{\mathrm{d}}{\mathrm{d} x}(y$. their IF $)=x \mathrm{e}^{\frac{1}{2} x^{2}}$.their IF For correct integration both sides For correct solution AEF as $y=\mathrm{f}(x)$
$\begin{aligned} & (0,1) \Rightarrow c=\frac{1}{2} \\ & \Rightarrow y=\frac{1}{2}\left(\mathrm{e}^{\frac{1}{2} x^{2}}+\mathrm{e}^{-\frac{1}{2} x^{2}}\right) \end{aligned}$	M1 A1 2	For substituting $(0,1)$ into their GS, solving for c and obtaining a solution of the DE For correct solution AEF Allow $y=\cosh \left(\frac{1}{2} x^{2}\right)$
6		
	M1 A1 A1 3	For using \times of direction vectors For correct \mathbf{n} For substituting (1, 3,4) and obtaining AG ... (Verification only M0)
(ii) METHOD 1 $\begin{aligned} & \text { distance }=\frac{21-3}{\|\mathbf{n}\|} \text { OR } \frac{\|[1,3,4] \cdot[2,-1,1]-21\|}{\|\mathbf{n}\|} \\ & \begin{aligned} & O R \frac{\|([1,3,4]-[a, b, c]) \cdot[2,-1,1]\|}{\|\mathbf{n}\|} \begin{array}{c} \text { where }(a, b, c) \\ \text { is on } q \end{array} \\ &=\frac{18}{\sqrt{6}}=3 \sqrt{6} \end{aligned} \end{aligned}$	M1 B1 A1 3	For 21-3 OR [1, 3, 4]. [2, -1, 1]-21 OR $\|([1,3,4]-[a, b, c]) \cdot[2,-1,1]\|$ soi For $\|\mathbf{n}\|=\sqrt{6}$ soi For correct distance AEF
METHOD 2 $\begin{aligned} & {[1+2 t, 3-t, 4+t] \text { on } q} \\ & \Rightarrow 2(1+2 t)-(3-t)+(4+t)=21 \Rightarrow t=3 \\ & \Rightarrow \text { distance }=3\|\mathbf{n}\|=3 \sqrt{6} \end{aligned}$	M1 B1 A1	For forming and solving an equation in t For $\|\mathbf{n}\|=\sqrt{6}$ soi For correct distance AEF
METHOD 3 As Method 2 to $t=3 \Rightarrow(7,0,7)$ on q distance from $(1,3,4)$ $=\sqrt{(7-1)^{2}+(0-3)^{2}+(7-4)^{2}}=\sqrt{54}=3 \sqrt{6}$	M1* M1 (*dep) A1	For finding point where normal meets q For finding distance from ($1,3,4$) For correct distance AEF
6		
3 (i) $\begin{aligned} & \sin \theta=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right) \\ & \sin ^{4} \theta=\frac{1}{16}\left(\mathrm{z}^{4}-4 \mathrm{z}^{2}+6-4 \mathrm{z}^{-2}+\mathrm{z}^{-4}\right) \\ & \Rightarrow \sin ^{4} \theta=\frac{1}{16}(2 \cos 4 \theta-8 \cos 2 \theta+6) \\ & \Rightarrow \sin ^{4} \theta=\frac{1}{8}(\cos 4 \theta-4 \cos 2 \theta+3) \end{aligned}$	B1 M1 M1 A1 4	z or $\mathrm{e}^{\mathrm{i} \theta}$ may be used throughout For correct expression for $\sin \theta$ soi For expanding $\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)^{4}$ (with at least 3 terms and 1 binomial coefficient) For grouping terms and using multiple angles For answer obtained correctly AG
(ii) $\begin{aligned} & \int_{0}^{\frac{1}{6} \pi} \sin ^{4} \theta \mathrm{~d} \theta=\frac{1}{8}\left[\frac{1}{4} \sin 4 \theta-2 \sin 2 \theta+3 \theta\right]_{0}^{\frac{1}{6} \pi} \\ & =\frac{1}{8}\left(\frac{1}{8} \sqrt{3}-\sqrt{3}+\frac{1}{2} \pi\right)=\frac{1}{64}(4 \pi-7 \sqrt{3}) \end{aligned}$	M1 A1 M1 $\text { A1 } 4$	For integrating (i) to $A \sin 4 \theta+B \sin 2 \theta+C \theta$ For correct integration For completing integration and substituting limits For correct answer AEF(exact)
8		

4 (i)

\(\left.\begin{array}{l}=sum of roots of\left(z^{3}-1=0\right)=0

\hline OR \quad \omega^{3}=1 \Rightarrow(\omega-1)\left(\omega^{2}+\omega+1\right)=0

\Rightarrow 1+\omega+\omega^{2}=0(for \omega \neq 1)\end{array}\right]\)| $1+\omega+\omega^{2}=\frac{1-\omega^{3}}{1-\omega}\left(=\frac{0}{1-\omega}\right)=0$ |
| :--- |
| OR sum of G.P. |
| shown on Argand diagram |
| or explained in terms of |
| vectors |

M1

A1 2

For result shown by any correct method AG

8 (i)	$\begin{aligned} & \left((a, b)^{*}(c, d)\right) *(e, f)=(a c, a d+b)^{*}(e, f) \\ & =(a c e, a c f+a d+b) \\ & (a, b)^{*}((c, d) *(e, f))=(a, b) *(c e, c f+d) \\ & =(a c e, a c f+a d+b) \end{aligned}$	M1 A1 A1 3	For 3 distinct elements bracketed and attempt to expand For correct expression For correct expression again
(ii)	$\begin{aligned} & (a, b)^{*}(1,1)=(a, a+b),(1,1)^{*}(a, b)=(a, b+1) \\ & a+b=b+1 \Rightarrow a=1 \\ & \Rightarrow(1, b) \forall b \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	For combining both ways round For equating components (allow from incorrect pairs) For correct elements AEF
(iii)	$\begin{aligned} & (m p, m q+n) O R(p m, p n+q)=(1,0) \\ & \Rightarrow(p, q)=\left(\frac{1}{m},-\frac{n}{m}\right) \end{aligned}$	M1 A1 2	For either element on LHS For correct inverse
	$\begin{aligned} & (a, b) *(a, b)=\left(a^{2}, a b+b\right)=(1,0) \\ & O R(a, b)=\left(\frac{1}{a},-\frac{b}{a}\right) \Rightarrow a^{2}=1, a b=-b \end{aligned}$ \Rightarrow self-inverse elements $(1,0)$ and $(-1, b) \forall b$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { B1 A1 } \\ & \ldots \end{aligned}$	For attempt to find self-inverses For $(1,0)$. For ($-1, b$) AEF
(v)	$(0, y)$ has no inverse for any $y \Rightarrow$ not a group	B1 1	For stating any one element with no inverse. Allow $x \neq 0$ required, provided reference to inverse is made "Some elements have no inverse" B0
		12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

